MICROPLÁSTICOS: OCORRÊNCIA AMBIENTAL E DESAFIOS ANALÍTICOS
Link: https://www.scielo.br/j/qn/a/VJ58TBjHVqDZsvWLckcFbTQ/
Resumo
Plastic pollution is a major societal, economic, and environmental issue. Upon release into the environment, plastics are altered by biological and physicochemical processes that influence their fate and transport within ecosystems. Large plastic debris can fragment into smaller pieces and are called microplastics (MPs) when occurring at sizes between 1 µm and 5 mm, fragmented or produced in this range. These small pieces of plastics are ubiquitous anthropogenic contaminants found throughout the world; however, the environmental consequences and effects on biota are not clearly understood. Scientific literature on the environmental implications of MP pollution is expanding rapidly and critical review of this literature is necessary to identify areas of evolving consensus and remaining gaps in knowledge. Herein a comprehensive literature review was performed to assess (i) the sources and distribution of MPs in different environmental compartments, (ii) the analytical methods that have been applied worldwide, and the key analytical challenges that remain in assessing MPs in the environment, and, finally, (iii) to integrate the findings of Brazilian MP research, which showed that since 2004 (80 papers up to 2020) has documented the presence of MPs in aquatic matrices and sediments with focus on marine ecosystems, mainly identified by visual inspection.
Keywords: plastic pollution; environmental contaminants; microplastic sampling; microplastic characterization; polymer identification
INTRODUÇÃO
A poluição plástica é atualmente um problema de grande relevância sob o ponto de vista ambiental e socioeconômico, consequência principalmente da má gestão dos resíduos sólidos, dentre outros fatores. Uma ramificação da questão é dada pela poluição causada por plásticos cujos tamanhos estejam nas escalas micrométrica e milimétrica. O primeiro relato envolvendo a presença dessas partículas plásticas no ambiente foi publicado em 1972, quando esse material foi encontrado retido em redes de plâncton, em águas costeiras na região da Nova Inglaterra, nos Estados Unidos.1 No mesmo ano, partículas de polietileno e poliestireno também foram identificadas no litoral do Rio Grande do Sul, no Brasil.2 No entanto, a comunidade científica ainda não explorava a problemática e poucos trabalhos foram publicados ao longo da década de 70. Com o aumento da preocupação sobre as consequências ecológicas da presença de tais partículas em diferentes ecossistemas, os estudos envolvendo os resíduos plásticos foram incorporando novos conceitos e o termo microplástico (MP) foi introduzido em 2004.3-5
Várias definições são encontradas para o termo MP, de acordo com a faixa de tamanho das partículas,6,7 sendo a mais utilizada a que se refere a esses materiais como partículas de polímeros orgânicos sintéticos com tamanho inferior a 5 mm. Essa definição foi proposta em 2009 pela National Oceanic and Atmospheric Administration (NOAA) e, desde então, a maioria das publicações tem a adotado como referência, inclusive este trabalho.3,8 Após um pouco mais de uma década, em 2020, foi publicada a norma intitulada “Plastics - Environmental Aspects - State of Knowledge and Methodologies” (ISO/TR 21960:2020), em que o termo MP é definido como qualquer partícula plástica sólida insolúvel em água com dimensões entre 1 µm e 1000 µm.9 A norma também define o termo “large microplastic” (microplástico grande, em tradução livre), para a faixa de tamanho de 1 a 5 mm.
Os MP são onipresentes no ambiente e são classificados atualmente como contaminantes emergentes.10,11 Seus potenciais riscos aos seres vivos, bem como os níveis da contaminação em diferentes compartimentos ambientais, precisam ser mais bem elucidados. Por isso, essa nova classe tem sido foco de pesquisas no mundo todo.
O objetivo deste trabalho de revisão é destacar aspectos importantes da temática da poluição por MP, do ponto de vista da química ambiental, abordando sobre a presença deles no ambiente e discutindo sobre os métodos e os desafios analíticos para a determinação de MP em matrizes ambientais. Além disso, o trabalho também tem por meta apresentar o cenário das pesquisas no Brasil. A primeira parte desta revisão contextualiza o problema em nível mundial e apresenta uma discussão sobre as fontes e algumas consequências dos MP no ambiente. A segunda parte discute as etapas de controle de qualidade, amostragem, preparo de amostras e caracterização, que têm sido empregadas mundialmente para a determinação de MP nos compartimentos ambientais solo/sedimento, água e ar. Finalmente, a terceira parte apresenta, com base nos trabalhos publicados em literatura indexada, o cenário de ocorrência de MP no Brasil, destacando os métodos analíticos que foram empregados nas pesquisas.
Deste modo, esta revisão é apresentada de forma a levar aos químicos ambientais e a outros pesquisadores das demais áreas de conhecimento deste tema transdisciplinar, as ferramentas que darão subsídios para políticas públicas e elaboração de projetos nessa área, que ainda é carente de pesquisa no Brasil.
A PRODUÇÃO E O DESTINO DOS PLÁSTICOS
Os plásticos são materiais poliméricos sintéticos leves, impermeáveis e duráveis, que podem ser formulados para serem rígidos ou flexíveis, transparentes ou coloridos, e apresentam baixo custo. Por tantas vantagens, são amplamente empregados em todos os setores da sociedade moderna. No entanto, problemas relacionados ao gerenciamento inadequado dos resíduos sólidos fazem com que estes materiais sejam considerados contaminantes onipresentes no ambiente.12,13
A produção mundial de plásticos, que se iniciou em 1950, cresceu consideravelmente nos últimos 60 anos, com estimativas de que 8,3 bilhões de toneladas de plásticos virgens tenham sido produzidos para as mais diferentes aplicações. Os números atuais mostram que 6,3 bilhões de toneladas de resíduos plásticos foram gerados entre o início da produção, na década de 50, e 2015. Dessa quantidade, 9% foram reciclados, 12% incinerados e 79% foram dispostos em aterros ou no ambiente, demonstrando as deficiências no saneamento e no controle dos resíduos sólidos. Até 2050, estão previstos que cerca de 12 bilhões de toneladas de resíduos plásticos sejam lançados no ambiente, caso a produção atual de plásticos permaneça nesse ritmo acelerado e sem melhoria da gestão de resíduos.14,15
Estudos apontam que, dentre os plásticos mais encontrados no ambiente, estão os polímeros termoplásticos polipropileno (PP), polietileno (PE) (podendo ser PEBD - polietileno de baixa densidade ou PEAD - polietileno de alta densidade), poliestireno (PS), policloreto de vinila (PVC), politereftalato de etileno (PET), poliamida (PA) e o polímero termorrígido poliuretano (PU).16
No Brasil, os dados da Associação Brasileira da Indústria do Plástico (Abiplast), que monitora os números desse setor, apontam crescimentos anuais na indústria de transformados plásticos.17 Ao mesmo tempo, o país ocupa a quarta posição em geração de resíduo plástico (posicionado após os Estados Unidos, a China e a Índia), com aproximadamente 11 milhões de toneladas desses resíduos sendo gerados por ano, o que equivale a cerca de 11% do total mundial. Além disso, apesar de haver programas de incentivo ao processo de reciclagem, o qual pode afetar positivamente a cadeia socioeconômica do país, somente 1,28% tem essa destinação no Brasil.18 Um aspecto especialmente importante que pode ser atribuído ao baixo índice de reciclagem é o fato de que muitos desses materiais têm sido usados na produção de plásticos chamados de “uso único”, por exemplo os descartáveis, os quais, em sua maioria, são de difícil reciclagem e representam uma parcela significativa da poluição plástica global.
Os impactos do ponto de vista ecológico e ambiental, aliados aos prejuízos estéticos e econômicos causados pela disposição inadequada desses resíduos, tornaram a poluição plástica alvo de ações e pesquisas nas mais diferentes áreas em âmbito mundial. Se o plástico é o material mais utilizado, é esperado que ele represente uma fração considerável dentre os resíduos sólidos. Além disso, é sabido que o destino final majoritário dos plásticos é o oceano e que cerca de 80% desses resíduos provém dos sistemas terrestres.19,20 Como consequência, há, atualmente, pelo menos cinco grandes ilhas de plásticos nos oceanos. Carregadas pelas correntes marítimas, toneladas de resíduos plásticos flutuantes se acumulam nos vórtices oceânicos, causando prejuízos inestimáveis ao ecossistema marinho, incluindo a morte de milhares de animais de acordo com o Panorama da Biodiversidade Global da Organização das Nações Unidas.21
MICROPLÁSTICOS NO AMBIENTE
Microplásticos primários e secundários
Os MP podem ser classificados como primários ou secundários de acordo com a sua fonte, ou seja, a origem do MP.4,22-24 Os MP de fonte primária são aqueles produzidos propositalmente para serem usados na escala de até 5 mm e, consequentemente, são lançados no ambiente nesse tamanho. Esses podem se apresentar em escala microscópica (microesferas), como os utilizados na formulação de cosméticos (dentre eles, os que contém glíter tem recebido especial destaque) e produtos de higiene pessoal (PHP) como esfoliantes, sabonetes e cremes dentais. Além disso, são, também, utilizados na indústria farmacêutica, na indústria de plásticos, como matéria prima (pellets), e na indústria química em geral, como abrasivos industriais.25-27
Os MP secundários, por sua vez, são aqueles que resultam da fragmentação dos resíduos plásticos maiores (ex: embalagens) expostos às intempéries no ambiente e outros agentes estressores, degradando-se em fragmentos cada vez menores, até atingir o tamanho dos MP.28,29 A degradação de um polímero está relacionada ao rompimento de ligações químicas covalentes, seja na cadeia principal ou em cadeia lateral. Esse rompimento é consequente da geração de espécies reativas (na maioria dos casos, radicais livres) que são também os responsáveis pela propagação do processo de degradação.30 A iniciação do processo pode ser causada por fotodegradação e/ou degradação física, química e biológica.31 Todas essas formas de iniciação implicam no fornecimento de energia para o rompimento das ligações químicas. Dessa forma, é possível entender porque alguns polímeros se degradam mais facilmente do que outros. Nos polímeros ramificados, por exemplo, a presença da ramificação implica na existência de átomos de carbono terciário na cadeia polimérica principal. A energia da ligação química C-H é menor em átomos de carbono terciário do que nos secundários, de forma que o processo de degradação pode ser iniciado mais facilmente em polímeros de cadeias ramificadas quando comparados aos polímeros lineares, os quais possuem majoritariamente átomos de carbono secundário.32 Os processos de degradação resultam em perda da massa molar do polímero, aumento da molhabilidade e da cristalização, bem como a formação de fissuras, gerando os fragmentos de MP.33 A degradação física das partículas leva à geração de diferentes formas de MP, por exemplo, fibras, fragmentos e filmes. Os pellets, por sua vez, permanecem em sua forma física original após a degradação, mas podem ter algumas de suas propriedades alteradas.34,35
Microplásticos como vetores de transporte de outros contaminantes
Além da fragmentação, a degradação dos polímeros também favorece a liberação dos aditivos químicos, tais como, estabilizantes, corantes, plastificantes, retardantes de chama, entre outros, os quais são empregados na formulação do polímero para atingir as características necessárias ao uso pretendido no produto final. Durante a degradação, esses compostos podem ser lixiviados para o ambiente através da difusão até a superfície do MP.4,36 Além disso, principalmente em ambientes aquáticos, a via contrária, ou seja, a sorção de outros contaminantes no MP, tem sido objeto de estudos que visam elucidar a ação dos MP como vetores de transporte de outros contaminantes químicos orgânicos utilizados ou não no processamento do polímero. Tais contaminantes, como ftalatos, bisfenol A e éteres difenílicos polibromados, por exemplo, são conhecidos por interferirem no sistema endócrino. Além desses, compostos inorgânicos, como metais também podem se associar aos MP.37
Contaminantes de origem antrópica, como bifenilas policloradas (PCB, do inglês Polychlorinated Biphenyls), pesticidas, hidrocarbonetos policíclicos aromáticos e dioxinas foram identificados sorvidos em MP ao redor do mundo.37 O projeto chamado International Pellet Watch, criado em 2006 é uma iniciativa de monitorar, em nível mundial, a quantidade de contaminantes orgânicos associados aos pellets.38 Do Brasil, 21 amostras foram analisadas e concentrações de PCB foram detectadas entre 43 ng g-1 e 3892 ng g-1 de pellet.38
Uma vez no ambiente, a sorção de contaminantes pode potencializar os riscos relacionados à ingestão acidental de MP pela biota, deixando de ser apenas um efeito físico (obstrução do trato digestivo, sufocamento e estresse), mas também provocando outros efeitos fisiológicos (alterações hormonais, distúrbios na produção de enzimas, reprodução e crescimento) que estariam correlacionados aos elevados níveis de degradação dos corpos de água aos quais os organismos estão expostos.39-48
Os MP se comportam ainda como potenciais vetores de transporte de microrganismos, incluindo patógenos, através da formação de um biofilme na superfície do MP.49-51 Espécies invasoras também são transportadas por MP e seus efeitos à biodiversidade do ecossistema ainda são desconhecidos, bem como os prejuízos relacionados à migração de espécies exóticas para outros habitats.37,42
Distribuição e fontes dos microplásticos no ambiente
Uma expedição ao local mais profundo dos oceanos, a Fossa das Marianas, revelou a presença de lixo plástico na coluna d’água. Foram encontrados MP em organismos dessa e de outras cinco fossas profundas do oceano.52 Outros estudos recentes relevaram a presença de MP na neve da montanha de maior altitude do planeta, o Monte Everest,53 bem como no ar de cidades populosas na China.54 Esses exemplos ilustram que os MP são contaminantes que podem ser encontrados em todas as matrizes ambientais e nos seres vivos, tanto em grandes centros urbanos, quanto em regiões remotas no nosso planeta, dada a dinâmica com que são lançados e transportados no ambiente.55-58
Diversas práticas e atividades usam e lançam resíduos plásticos no ambiente, de maneira proposital ou não. Os resíduos plásticos relacionados a essas atividades são as principais fontes de MP para o ambiente. A Figura 1a apresenta exemplos das principais atividades com potencial de emissão de plásticos (que serão geradores de MP) e MP (primários e/ou secundários) ao ambiente, bem como a distribuição deles nos diferentes compartimentos ambientais. A Figura 1b ilustra a distribuição dos MP ao longo da coluna d’água.
Figura 1
(a) Principais exemplos de práticas e atividades que são fontes de emissão de microplásticos (MP) primários e/ou secundários e sua distribuição em diferentes compartimentos ambientais, como: (1) descarte de resíduos plásticos em lixões e aterros; (2) descarte inadequado de resíduos sólidos no ambiente; (3) desgaste de pneus de borracha; (4) utilização de produtos de higiene pessoal e cosméticos compostos por microesferas poliméricas; (5) lavagem de roupas sintéticas com desprendimento de fibras poliméricas; (6) aporte de microfibras e microesferas no esgoto e entrada na Estação de Tratamento de Esgoto (ETE); (7) lançamento do esgoto diretamente no ambiente, sem nenhum tratamento; (8) transporte de MP pelo ar na poeira de ambientes internos; (9) transporte de MP pelo ar em ambientes externos via deposição seca e (10) úmida; (11) uso de filmes plásticos na agricultura; (12) perda logística nas atividades industriais com a utilização de pellets; (13) uso de materiais plásticos em atividades pesqueiras e (14) desgaste de pinturas de embarcações. (b) Principais exemplos de fenômenos que ocorrem em ambientes aquáticos e afetam a distribuição de MP na coluna d’água, como: (15) formação de um biofilme na superfície das partículas de MP - bioincrustação; (15) desprendimento da camada de biofilme no MP - desincrustação e (16) desprendimento de MP aderidos ao sedimento - bioturvação
O descarte inadequado de resíduos sólidos é uma prática que culmina para a poluição plástica em ambientes terrestres e aquáticos, com a possível formação de MP nesses compartimentos. Em ambiente terrestre, os resíduos plásticos presentes em lixões e aterros (Figura 1a, exemplo 1) são responsáveis pela formação de MP secundários, os quais são determinados em amostras de lixiviado de aterros sanitários urbanos.59 Além disso, os resíduos plásticos descartados inadequadamente no ambiente terrestre (Figura 1a, exemplo 2) podem atingir os corpos de água e também contribuem para a formação de MP em ambientes aquáticos. Outras fontes de emissão de MP em ambientes terrestres são o processo de desgaste de pneus (Figura 1a, exemplo 3), os quais são constituídos de borracha de estireno butadieno e inúmeros aditivos e o desgaste de pinturas em rodovias, através da abrasão dos veículos e ação do intemperismo.24
Algumas atividades cotidianas, como o uso de cosméticos ou lavagem de roupa, também contribuem para o lançamento de MP em ambientes aquáticos. As microesferas contidas em cosméticos e PHP (Figura 1a, exemplo 4) podem atingir concentrações de mais de 50 mil partículas por grama de produto.60 Em um estudo realizado na Eslovênia, foi estimada uma média diária de lançamento de microesferas no sistema de esgoto de 15 mg por pessoa. Utilizando um processo de tratamento de esgoto com sistema biológico, em escala de laboratório, foi concluído que cerca de 52% das microesferas são retidas no lodo ativado. Assim, para a região avaliada, é previsto um aporte diário de mais de 1 bilhão de microesferas no rio receptor do esgoto tratado.61
Inúmeras fibras de tecidos naturais ou sintéticos são liberadas no efluente do processo de lavagem de roupas (Figura 1a, exemplo 5). As fibras sintéticas são constituídas em sua maioria de poliéster, acrílico e/ou PA. Uma única peça de roupa pode produzir mais de 1900 fibras por lavagem e suas concentrações podem superar 300 mg kg-1 de tecido lavado, porém, esses valores variam de acordo com as características de lavagem.62-64 Essas fibras são despejadas no sistema de esgoto doméstico e encaminhadas para as Estações de Tratamento de Esgoto (ETE) (Figura 1a, exemplo 6). No entanto, em países em que grande parte da população não possui rede coletora e/ou tratamento de esgoto, o aporte de MP é agravado no ambiente, pois o esgoto é lançado diretamente nos corpos aquáticos (Figura 1a, exemplo 7). Por exemplo, no Brasil, a taxa de coleta e afastamento de esgoto é cerca de 60% e aproximadamente 50% de todo o esgoto bruto gerado no país é lançado diretamente nos rios, sem nenhum tratamento.65
A comunidade científica ainda discute a classificação das fibras têxteis, consideradas uma das principais fontes de contaminação de MP no ambiente. Alguns autores classificam as fibras como sendo de origem primária, uma vez que são lançadas no ambiente já nesse tamanho pelo descarte da lavagem. Entretanto, as fibras são produzidas para serem longas e o rompimento físico delas é considerado por outros autores como um mecanismo de degradação, sendo nesse caso classificadas como MP secundários.62 O Guia do GESAMP (do inglês Joint Group of Experts on the Scientific Aspects of Marine Environmental Protection) classifica as fibras têxteis como MP secundários.66
Estudos relataram quantidades significativas de fibras na poeira de ambientes internos (Figura 1a, exemplo 8).54,67,68 As concentrações de fibras coletadas em amostras de poeira dentro de apartamentos foram cerca de 40 vezes maiores do que em ambientes externos. Devido à dificuldade em caracterizar quimicamente essas fibras, os autores concluíram que somente 33% das amostras correspondiam a polímeros sintéticos (PP e PA, em sua maioria). O restante das fibras encontradas na poeira foi classificado como de origem natural, como algodão, acetato de celulose e lã.69
Em ambientes externos, os MP no ar podem ser transportados a outros compartimentos ambientais via deposição seca (Figura 1a, exemplo 9) e úmida (Figura 1a, exemplo 10). Em 2015 foi publicado o primeiro estudo sobre a possível presença de MP na atmosfera, que reportou uma média de 118 partículas m-2 d-1 na cidade de Paris. Dentre as partículas observadas, mais de 90% foram classificadas como fibras.70 A necessidade de confirmação da composição das partículas e a correlação com as características locais e dados atmosféricos como condições do vento, impulsionou outros trabalhos nessa matriz ambiental em áreas urbanas e rurais. Recentemente, pesquisadores encontraram MP em água de chuva coletada em áreas de proteção ambiental em concentrações médias de 132 partículas m-2 d-1, e estimaram que mais de mil toneladas de partículas plásticas são depositadas pela atmosfera anualmente no oeste dos Estados Unidos.71
Outros pesquisadores encontraram ainda partículas de MP em regiões montanhosas localizadas entre a Espanha e a França. Essa região é considerada intocada, devido ao difícil acesso e à distância de grandes cidades e centros industriais. A predominância da composição das partículas encontradas foi de PS e PE, polímeros muito utilizados em materiais de uso único e embalagens.72 A presença de MP em áreas remotas retrata, portanto, a facilidade com que essas partículas podem ser transportadas por longas distâncias pela ação do vento.72-74
Outros exemplos de fontes terrestres de emissão de MP estão relacionados à atividade agrícola. Os MP também são provenientes da degradação de filmes plásticos (Figura 1a, exemplo 11), normalmente de PE, utilizados na agricultura para aplicação da técnica mulching, a qual é destinada à proteção da plantação.75 Concentrações de MP entre 80,3 a 1075,6 partículas kg-1 de solo foram identificadas em áreas agrícolas, evidenciando que os filmes plásticos podem contribuir significativamente na contaminação do solo.76 Na agricultura, a aplicação do lodo de esgoto como fertilizante orgânico também pode ser uma via de contaminação do solo por MP, pois o lodo é a fração onde os MP ficam majoritariamente retidos após o tratamento de esgoto.77,78 Dependendo do sistema de tratamento utilizado na ETE, a remoção de MP no afluente pode chegar até mais que 99%.22 Estudos realizados em ETE na Dinamarca estimam concentrações superiores a 18 mil partículas de MP L-1 d-1 no afluente de uma estação com tratamento secundário.79 No entanto, no Brasil, a aplicação do lodo na agricultura está protegida por legislações rigorosas como a Resolução CONAMA N°375/2006, o que torna uma prática pouco comum no país.80
Atividades industriais e logísticas relacionadas à produção de plásticos também são fontes de MP primários. Os pellets são perdidos durante seu transporte até seu uso como matéria prima na manufatura de produtos diversos (Figura 1a, exemplo 12), entrando acidentalmente no ambiente. Zonas portuárias são conhecidas por apresentarem altas concentrações de pellets e outros MP, pois estão expostas a grandes quantidades de descarte de resíduos provenientes de diversas fontes, por exemplo embarcações comerciais e turísticas.
Atividades pesqueiras também geram resíduos plásticos, como as redes e linhas de nylon (PA) e PE, que podem eliminar fragmentos plásticos no ambiente (Figura 1a, exemplo 13). As embarcações podem também contaminar o ambiente aquático com MP através do desgaste de suas pinturas (Figura 1a, exemplo 14), as quais são constituídas de tintas poliméricas como PU e epóxido para evitar a corrosão e a incrustação.24
Em ambientes aquáticos, a densidade e a forma dos MP são, via de regra, os fatores determinantes quanto à sua distribuição ao longo da coluna d’água (Figura 1b). Tabelas com os valores de densidade dos principais polímeros são facilmente encontradas na literatura, porém, essas informações referem-se aos materiais puros.23,81-83 A incorporação de ar e aditivos promove um aumento ou diminuição na densidade do material polimérico processado, tornando-o mais susceptível ou não à decantação. Algumas exceções à regra são encontradas, visto que na prática nem sempre a densidade de um polímero justifica sua presença em determinada profundidade. Isso ocorre porque os polímeros são materiais altamente persistentes e os processos de degradação a que estão expostos no ambiente alteram as suas propriedades físico-químicas se comparados ao polímero virgem.31
A bioincrustação (Figura 1b, exemplo 15), causada pela formação de biofilme e colonização de microrganismos, também é capaz de promover um aumento na densidade da partícula, tornando-a facilmente encontrada em camadas mais profundas da coluna d’água e até no sedimento. O fenômeno inverso, chamado de desincrustação (Figura 1b, exemplo 15), ocorre através do desprendimento do biofilme pela ação de microrganismos e possibilita que os MP retornem à interface água-ar.31
O aparecimento de ranhuras na superfície, alterações na cristalinidade causadas pela degradação e a presença de bolsas de ar no interior do polímero são capazes de levar a uma diminuição em sua densidade, tornando-os mais propensos à flutuação. Além disso, o movimento da água oriundo das correntes promove a agitação dos MP, o que ocasiona sua presença em toda a coluna d’água, desde a superfície até o sedimento.23,31
Nos oceanos, há ainda um processo de sedimentação de partículas com materiais provenientes da decomposição de células, chamado de neve marinha. Além de prover alimento para o fundo do mar, a neve marinha é também uma via de transporte de MP. Partículas com tamanho ≥ 200 µm como argila e detritos orgânicos, bem como fitoplâncton presentes na coluna d’água, aderem-se aos MP e podem, assim, deslocá-los a diferentes profundidades até atingir o sedimento.84,85 Uma vez no sedimento, alguns organismos são capazes de promover a bioturvação (Figura 1b, exemplo 16), que possibilita o desprendimento de MP através da abertura de caminhos nas camadas superficiais, sendo assim carregados pela corrente marítima. Essa dinâmica de distribuição permite que os MP ocupem diferentes profundidades em momentos distintos ao longo do seu tempo de vida no ambiente.34,47
Exposição da biota e dos seres humanos aos microplásticos
De maneira geral, os MP são facilmente ingeridos quando presentes no ambiente, diretamente por organismos ou indiretamente através do consumo de espécies de nível trófico inferior. A ingestão de MP é observada em organismos desde o primeiro nível trófico, como fitoplâncton e zooplâncton, até espécies maiores, como tartarugas e pássaros.86 Alguns fatores influenciam a biodisponibilidade de MP no ambiente, por exemplo, tamanho, densidade e coloração. Os MP menos densos são ingeridos pelas espécies que habitam superfícies dos corpos de água e os mais densos afetam as espécies presentes na coluna d’água e sedimento. Por serem resistentes aos processos de metabolização, os MP podem se bioacumular em diferentes organismos e, de acordo com a distribuição ao longo dos níveis tróficos, também podem ser biomagnificados.87
Partículas de lixo marinho foram encontradas no intestino de tartarugas no litoral do Rio Grande do Sul, dentre as quais mais de 70% eram MP. Resultados semelhantes foram observados em pássaros marinhos na mesma região, onde mais de 95% das partículas encontradas foram identificadas como MP.88 A presença de MP e resíduos plásticos também foi reportada em diferentes organismos, como plâncton,89 peixes,90-101 tartarugas,88,102 aves marinhas,88,103-105 mexilhões,106 anêmonas,107 peixe-boi,108 pinguins,109 tubarão baleia,110 cachalote,111 caranguejo,112 além de outros organismos que habitam a areia das praias.113
Recentemente, pesquisadores também encontraram MP de diferentes composições em fezes de pinguins na Antártica, evidenciando a ingestão desses materiais inclusive em áreas pouco habitadas do nosso planeta.114 Algumas consequências da ingestão de MP pelos organismos são a perda da habilidade de capturar e digerir alimentos, perda de apetite devido ao bloqueio do canal alimentar e dificuldade de locomoção.37 Além da ingestão, em alguns organismos, como caranguejos, os MP são encontrados nas brânquias devido aos mecanismos de respiração.86 Após ingeridos, os MP também podem entrar no sistema circulatório causando danos em tecidos e células.87 Estudos in vitro mostraram que o contato de partículas de PP com células mononucleares do sangue periférico pode causar problemas à saúde, induzindo a produção de citotoxinas de células imunes.115
Na maioria dos casos, os MP são encontrados no trato gastrointestinal de peixes, portanto, raramente entram na dieta humana, pois são frações não comumente consumidas.116 Porém, em peixes processados, como as sardinhas, essas partículas podem ser ingeridas pelos seres humanos com maior facilidade. Um estudo relatou a presença de partículas de MP em sardinhas enlatadas provenientes de diferentes regiões do mundo, como Canadá, Alemanha, Irã, Japão, Letônia, Malásia, Marrocos, Polônia, Portugal, Rússia, Escócia, Tailândia e Vietnã.VOLTAR