Artigos Científicos

Effects of aluminum and other cations on the structure of brain and liver chromatin


Link: https://pubs.acs.org/doi/abs/10.1021/bi00435a043

 

Biochemistry19892893911-3915 Publication Date:May 2, 1989 https://doi.org/10.1021/bi00435a043

 

This article is cited by 125 publications.

  1. Spiro D. Alexandratos and Xiaoping Zhu. Polyols as Scaffolds in the Development of Ion-Selective Polymer-Supported Reagents: The Effect of Auxiliary Groups on the Mechanism of Metal Ion Complexation. Inorganic Chemistry 2008, 47 (7) , 2831-2836. DOI: 10.1021/ic702263x.
  2. S. Anitha, P. Shanmugavelu, Valeswara-Rao Gazula, S. K. Shankar, Rani B. Menon, R. V. Rao, Jagannatha K. S. Rao, and Luigi Zecca. Molecular Understanding of Aluminum Bioinorganic Chemistry in Relevance to the Pathology of Alzheimer's Disease. 2002,,, 228-245. DOI: 10.1021/bk-2002-0822.ch016.
  3. Vipul Saxena, Vijay Kumar, Amrendra Rai, Rishikesh Yadav, Uttam Gupta, Vinay Kumar Singh, Partha Pratim Manna. Optimization of the bio-mechanical properties of Ti–8Si–2Mn alloy by 1393B3 bioactive glass reinforcement. Materials Research Express 2019, 6 (7) , 075401. DOI: 10.1088/2053-1591/ab1280.
  4. Y. Sasikumar, K. Indira, N. Rajendran. Surface Modification Methods for Titanium and Its Alloys and Their Corrosion Behavior in Biological Environment: A Review. Journal of Bio- and Tribo-Corrosion 2019, 5 (2) DOI: 10.1007/s40735-019-0229-5.
  5. Stefania Cometa, Maria Addolorata Bonifacio, Monica Mattioli-Belmonte, Luigia Sabbatini, Elvira De Giglio. Electrochemical Strategies for Titanium Implant Polymeric Coatings: The Why and How. Coatings 2019, 9 (4) , 268. DOI: 10.3390/coatings9040268.
  6. Donald R. C. McLachlan, Catherine Bergeron, Peter N. Alexandrov, William J. Walsh, Aileen I. Pogue, Maire E. Percy, Theodore P. A. Kruck, Zhide Fang, Nathan M. Sharfman, Vivian Jaber, Yuhai Zhao, Wenhong Li, Walter J. Lukiw. Aluminum in Neurological and Neurodegenerative Disease. Molecular Neurobiology 2019, 56 (2) , 1531-1538. DOI: 10.1007/s12035-018-1441-x.
  7. Baoqi Wang, Wei Ruan, Jue Liu, Taomei Zhang, Hailin Yang, Jianming Ruan. Microstructure, mechanical properties, and preliminary biocompatibility evaluation of binary Ti–Zr alloys for dental application. Journal of Biomaterials Applications 2019, 33 (6) , 766-775. DOI: 10.1177/0885328218811052.
  8. Saran Tantavisut, Boonrat Lohwongwatana, Atchara Khamkongkaeo, Suparat Bootchai, Pairat Tangpornprasert, Aree Tanavalee, Pibul Ittiravivong. Characterization and Quick Screening Methodology of Novel Alloys for Biomedical Applications Using Filtered Cathodic Vacuum Arc Deposited Thin Film. Solid State Phenomena 2018, 283, 78-87. DOI: 10.4028/www.scientific.net/SSP.283.78.
  9. L. C. Tsao, Ming-Jer Hsieh, Yung-Ching Yu. Effects of Sn additions on microstructure and corrosion resistance of heat-treated Ti–Cu–Sn titanium alloys. Corrosion Engineering, Science and Technology 2018, 53 (4) , 252-258. DOI: 10.1080/1478422X.2018.1450466.
  10. Ildiko Peter, Ladislau Matekovits, Mario Rosso. Up-to-Date Knowledge and Outlooks for the Use of Metallic Biomaterials: Review Paper. 2018,, DOI: 10.5772/intechopen.69970.
  11. C.D. Yang, S.P. Wang, J.J. Shi, C.H. Wang, Z.M. Ren, G.H. Cao. Microstructures and mechanical properties of as-cast titanium-zirconium-molybdenum ternary alloys. Materialwissenschaft und Werkstofftechnik 2018, 49 (1) , 30-38. DOI: 10.1002/mawe.201700060.
  12. Yu-Po Peng, Chien-Ping Ju, Jiin-Huey Chern Lin. Effect of Heat Treatment within Alpha/Beta Dual-Phase Field on the Structure and Tensile Properties of Binary Ti–Mo Alloys. MATERIALS TRANSACTIONS 2018, 59 (5) , 734-740. DOI: 10.2320/matertrans.M2017371.
  13. C. Schneider-Maunoury, L. Weiss, D. Boisselier, P. Laheurte. Crystallographic analysis of functionally graded titanium-molybdenum alloys with DED-CLAD® process. Procedia CIRP 2018, 74, 180-183. DOI: 10.1016/j.procir.2018.08.089.
  14. Ji-Hyun Kong, Myong-Hun Kang, Jung-Eun Park, Tae-Hwan Kim, Kyung-Seon Kim, Tae-Sung Bae, Min-Ho Lee. Hardness and corrosion resistance of dental Ti-Zr alloy by changes of zirconium contents. Korean Journal of Dental Materials 2017, 44 (4) , 387-394. DOI: 10.14815/kjdm.2017.44.4.387.
  15. Rohit Khanna, Joo Ong, Ebru Oral, Roger Narayan. Progress in Wear Resistant Materials for Total Hip Arthroplasty. Coatings 2017, 7 (7) , 99. DOI: 10.3390/coatings7070099.
  16. Duygu Ege, İlayda Duru, Ali Reza Kamali, Aldo R. Boccaccini. Nitride, Zirconia, Alumina, and Carbide Coatings on Ti6Al4V Femoral Heads: Effect of Deposition Techniques on Mechanical and Tribological Properties . Advanced Engineering Materials 2017, 8, 1700177. DOI: 10.1002/adem.201700177.
  17. N.S. Manam, W.S.W. Harun, D.N.A. Shri, S.A.C. Ghani, T. Kurniawan, M.H. Ismail, M.H.I. Ibrahim. Study of corrosion in biocompatible metals for implants: A review. Journal of Alloys and Compounds 2017, 701, 698-715. DOI: 10.1016/j.jallcom.2017.01.196.
  18. . Introduction. 2017,,, 1-29. DOI: 10.1002/9783527342440.ch1.
  19. M. Hendrickson, S. A. Mantri, Y. Ren, T. Alam, V. Soni, B. Gwalani, M. Styles, D. Choudhuri, R. Banerjee. The evolution of microstructure and microhardness in a biomedical Ti–35Nb–7Zr–5Ta alloy. Journal of Materials Science 2017, 52 (6) , 3062-3073. DOI: 10.1007/s10853-016-0591-3.
  20. Hsueh-Chuan Hsu, Shih-Ching Wu, Shih-Kuang Hsu, Yi-Hang Liao, Wen-Fu Ho. . Bio-Medical Materials and Engineering 2017,,, 503. DOI: 10.3233/BME-171693.
  21. Rohit Khanna. Advances in Bearing Materials for Total Artificial Hip Arthroplasty. 2017,,, 467-494. DOI: 10.1007/978-3-319-73664-8_17.
  22. A. Nouri. Titanium foam scaffolds for dental applications. 2017,,, 131-160. DOI: 10.1016/B978-0-08-101289-5.00005-6.
  23. Hsueh-Chuan Hsu, Shih-Ching Wu, Shih-Kuang Hsu, Yi-Hang Liao, Wen-Fu Ho. Bioactivity of hybrid micro/nano-textured Ti-5Si surface by acid etching and heat treatment. Materials & Design 2016, 104, 205-210. DOI: 10.1016/j.matdes.2016.05.009.
  24. Hsueh-Chuan Hsu, Shih-Ching Wu, Shih-Kuang Hsu, Chih-Cheng Hsu, Wen-Fu Ho. Evaluation of the Machinability of Cast Ti-Si Alloys with Varying Si Content. Journal of Materials Engineering and Performance 2016, 25 (5) , 1986-1992. DOI: 10.1007/s11665-016-2040-5.
  25. Yanjie Bai, Yi Deng, Yunfei Zheng, Yongliang Li, Ranran Zhang, Yalin Lv, Qiang Zhao, Shicheng Wei. Characterization, corrosion behavior, cellular response and in vivo bone tissue compatibility of titanium–niobium alloy with low Young's modulus. Materials Science and Engineering: C 2016, 59, 565-576. DOI: 10.1016/j.msec.2015.10.062.
  26. Galih Senopati, Cahya Sutowo, I. Nyoman Gede P. A., Edy Priyanto Utomo, M. Ikhlasul Amal. Microstructure and mechanical properties of as-cast Ti-Mo-xCr alloy for biomedical application. 2016,,, 050005. DOI: 10.1063/1.4941631.
  27. Keivan A. Nazari, Alireza Nouri, Tim Hilditch. Mechanical properties and microstructure of powder metallurgy Ti–xNb–yMo alloys for implant materials. Materials & Design 2015, 88, 1164-1174. DOI: 10.1016/j.matdes.2015.09.106.
  28. G. Yablokova, M. Speirs, J. Van Humbeeck, J.-P. Kruth, J. Schrooten, R. Cloots, F. Boschini, G. Lumay, J. Luyten. Rheological behavior of β-Ti and NiTi powders produced by atomization for SLM production of open porous orthopedic implants. Powder Technology 2015, 283, 199-209. DOI: 10.1016/j.powtec.2015.05.015.
  29. Diego Rafael Nespeque Correa, Fábio Bossoi Vicente, Raul Oliveira Araújo, Mariana Luna Lourenço, Pedro Akira Bazaglia Kuroda, Marília Afonso Rabelo Buzalaf, Carlos Roberto Grandini. Effect of the substitutional elements on the microstructure of the Ti-15Mo-Zr and Ti-15Zr-Mo systems alloys. Journal of Materials Research and Technology 2015, 4 (2) , 180-185. DOI: 10.1016/j.jmrt.2015.02.007.
  30. K.J. Qiu, Y. Liu, F.Y. Zhou, B.L. Wang, L. Li, Y.F. Zheng, Y.H. Liu. Microstructure, mechanical properties, castability and in vitro biocompatibility of Ti–Bi alloys developed for dental applications. Acta Biomaterialia 2015, 15, 254-265. DOI: 10.1016/j.actbio.2015.01.009.
  31. Hsueh-Chuan Hsu, Shih-Ching Wu, Shih-Kuang Hsu, Kuan-Huang Hsu, Wen-Fu Ho. Machinability Evaluation of Ti-5Nb-xFe Alloys for Dental Applications. Journal of Materials Engineering and Performance 2015, 24 (3) , 1332-1339. DOI: 10.1007/s11665-014-1375-z.
  32. L.C. Tsao. Effect of Sn addition on the corrosion behavior of Ti–7Cu–Sn cast alloys for biomedical applications. Materials Science and Engineering: C 2015, 46, 246-252. DOI: 10.1016/j.msec.2014.10.037.
  33. Aileen I. Pogue, Walter J. Lukiw. The Mobilization of Aluminum into the Biosphere. Frontiers in Neurology 2014, 5 DOI: 10.3389/fneur.2014.00262.
  34. Shibo Guo, Aimin Chu, Haijiang Wu, Chunbo Cai, Xuanhui Qu. Effect of sintering processing on microstructure, mechanical properties and corrosion resistance of Ti–24Nb–4Zr–7.9Sn alloy for biomedical applications. Journal of Alloys and Compounds 2014, 597, 211-216. DOI: 10.1016/j.jallcom.2014.01.087.
  35. I. Cvijović-Alagić, Z. Cvijović, J. Bajat, M. Rakin. Composition and processing effects on the electrochemical characteristics of biomedical titanium alloys. Corrosion Science 2014, 83, 245-254. DOI: 10.1016/j.corsci.2014.02.017.
  36. Sr. Prem D'Souza, K.K. Vijayalaxmi, Prashantha Naik. Assessment of genotoxicity of aluminium acetate in bone marrow, male germ cells and fetal liver cells of Swiss albino mice. Mutation Research/Genetic Toxicology and Environmental Mutagenesis 2014, 766, 16-22. DOI: 10.1016/j.mrgentox.2014.02.006.
  37. Surjyadipta Bhattacharjee, Yuhai Zhao, James M. Hill, Maire E. Percy, Walter J. Lukiw. Aluminum and its potential contribution to Alzheimer's disease (AD). Frontiers in Aging Neuroscience 2014, 6 DOI: 10.3389/fnagi.2014.00062.
  38. Hsueh-Chuan Hsu, Shih-Ching Wu, Shih-Kuang Hsu, Yu-Chi Li, Wen-Fu Ho. Structure and mechanical properties of as-cast Ti–Si alloys. Intermetallics 2014, 47, 11-16. DOI: 10.1016/j.intermet.2013.12.004.
  39. Linlin Liu, Jiang Xu, Paul Munroe, Jiake Xu, Zong-Han Xie. Electrochemical behavior of (Ti1−xNbx)5Si3 nanocrystalline films in simulated physiological media. Acta Biomaterialia 2014, 10 (2) , 1005-1013. DOI: 10.1016/j.actbio.2013.09.021.
  40. A. Bansiddhi, D.C. Dunand. Titanium and NiTi foams for bone replacement. 2014,,, 142-179. DOI: 10.1533/9780857099037.2.142.
  41. K.J. Qiu, W.J. Lin, F.Y. Zhou, H.Q. Nan, B.L. Wang, L. Li, J.P. Lin, Y.F. Zheng, Y.H. Liu. Ti–Ga binary alloys developed as potential dental materials. Materials Science and Engineering: C 2014, 34, 474-483. DOI: 10.1016/j.msec.2013.10.004.
  42. Eun-Sil Kim, Yong-Hoon Jeong, Han-Cheol Choe, William A. Brantley. Formation of titanium dioxide nanotubes on Ti–30Nb–xTa alloys by anodizing. Thin Solid Films 2013, 549, 141-146. DOI: 10.1016/j.tsf.2013.08.058.
  43. Samira Jebahi, Riadh Nsiri, Mohammed Boujbiha, Ezedine Bouroga, Tarek Rebai, Hassib Keskes, Abdelfattah El Feki, Hassane Oudadesse, Hafed El Feki. The impact of orthopedic device associated with carbonated hydroxyapatite on the oxidative balance: experimental study of bone healing rabbit model. European Journal of Orthopaedic Surgery & Traumatology 2013, 23 (7) , 759-766. DOI: 10.1007/s00590-012-1087-8.
  44. Hsueh-Chuan Hsu, Shih-Ching Wu, Shih-Kuang Hsu, Tsung-Fu Lin, Wen-Fu Ho. Structure and mechanical properties of as-cast Ti–5Nb–xCr alloys. Materials & Design 2013, 51, 268-273. DOI: 10.1016/j.matdes.2013.04.001.
  45. Hsueh-Chuan Hsu, Shih-Ching Wu, Shih-Kuang Hsu, Wei-Hao Kao, Wen-Fu Ho. Structure and mechanical properties of as-cast Ti–5Nb-based alloy with Mo addition. Materials Science and Engineering: A 2013, 579, 86-91. DOI: 10.1016/j.msea.2013.05.004.
  46. Fangxia Xie, Xinbo He, Shunli Cao, Min Mei, Xuanhui Qu. Influence of pore characteristics on microstructure, mechanical properties and corrosion resistance of selective laser sintered porous Ti–Mo alloys for biomedical applications. Electrochimica Acta 2013, 105, 121-129. DOI: 10.1016/j.electacta.2013.04.105.
  47. Huiliang Cao, Xuanyong Liu. Plasma Surface Engineering of Titanium-Based Materials for Osseointegration. 2013,,, 443-473. DOI: 10.1201/b15153-19.
  48. M. Khalid, M. Mujahid, A. Nusair Khan, R.S. Rawat. Dip Coating of Nano Hydroxyapatite on Titanium Alloy with Plasma Assisted γ-Alumina Buffer Layer: A Novel Coating Approach. Journal of Materials Science & Technology2013, 29 (6) , 557-564. DOI: 10.1016/j.jmst.2013.02.003.
  49. Yoshiki Oshida. Mechanical and Tribological Behaviors. 2013,,, 117-137. DOI: 10.1016/B978-0-444-62625-7.00005-4.
  50. Anna Hynowska, Eva Pellicer, Jordina Fornell, Sergio González, Nele van Steenberge, Santiago Suriñach, Annett Gebert, Mariana Calin, Jürgen Eckert, Maria Dolors Baró, Jordi Sort. Nanostructured β-phase Ti–31.0Fe–9.0Sn and sub-μm structured Ti–39.3Nb–13.3Zr–10.7Ta alloys for biomedical applications: Microstructure benefits on the mechanical and corrosion performances. Materials Science and Engineering: C 2012, 32 (8) , 2418-2425. DOI: 10.1016/j.msec.2012.07.016.
  51. Shi Bo Guo, Chun Bo Cai, Yong Qiang Zhang, Yong Xiao, Xuan Hui Qu. Biomedical Ti-24Nb-4Zr-7.9Sn Alloy Fabricated by Conventional Powder Metallurgy and Spark Plasma Sintering. Key Engineering Materials 2012, 520, 208-213. DOI: 10.4028/www.scientific.net/KEM.520.208.
  52. M. Khalid, M. Mujahid, Aamer Nusair Khan, R.S. Rawat, I. Salam, K. Mehmood. Plasma Sprayed Alumina Coating on Ti6Al4V Alloy for Orthopaedic Implants: Microstructure and Phase Analysis. Key Engineering Materials2012, 510-511, 547-553. DOI: 10.4028/www.scientific.net/KEM.510-511.547.
  53. . Aluminium-, Aluminiumoxid-, und Aluminiumhydroxid-haltige Stäube [MAK Value Documentation in German language, 2007]. 2012,,, 1-80. DOI: 10.1002/3527600418.mb742990verd0043.
  54. Paul Chi-Hsiun Kuo, Hsin-Hua Chou, Yun-Ho Lin, Pei-Wen Peng, Keng-Liang Ou, Woan-Ruoh Lee. Effects of Surface Functionalization on the Nanostructure and Biomechanical Properties of Binary Titanium-Niobium Alloys. Journal of The Electrochemical Society 2012, 159 (5) , E103-E107. DOI: 10.1149/2.094204jes.
  55. . Fundamentals of Medical Implant Materials. 2012,,, 6-17. DOI: 10.31399/asm.hb.v23.a0005682.
  56. Yu Xuan Li, Zhen Duo Cui, Xian Jin Yang, Sheng Li Zhu. Corrosion Behavior of Porous Ti-24Nb-4Zr Alloy in Different Simulated Body Fluids. Advanced Materials Research 2011, 399-401, 1577-1581. DOI: 10.4028/www.scientific.net/AMR.399-401.1577.
  57. Ying-Long Zhou, Dong-Mei Luo. Microstructures and mechanical properties of Ti–Mo alloys cold-rolled and heat treated. Materials Characterization 2011, 62 (10) , 931-937. DOI: 10.1016/j.matchar.2011.07.010.
  58. José Roberto Severino Martins Júnior, Renata Abdallah Nogueira, Raul Oliveira de Araújo, Tatiani Ayako Goto Donato, Vitor Elias Arana-Chavez, Ana Paula Rosifini Alves Claro, João Carlos Silos Moraes, Marília Afonso Rabelo Buzalaf, Carlos Roberto Grandini. Preparation and characterization of Ti-15Mo alloy used as biomaterial. Materials Research 2011, 14 (1) , 107-112. DOI: 10.1590/S1516-14392011005000013.
  59. Hsueh-Chuan Hsu, Shih-Ching Wu, Shih-Kuang Hsu, Yu-Chih Sung, Wen-Fu Ho. Effects of heat treatments on the structure and mechanical properties of Zr–30Ti alloys. Materials Characterization 2011, 62 (2) , 157-163. DOI: 10.1016/j.matchar.2010.10.013.
  60. O Gingu, G Benga, A Olei, N Lupu, P Rotaru, S Tanasescu, M Mangra, I Ciupitu, I Pascu, G Sima. Wear behaviour of ceramic biocomposites based on hydroxiapatite nanopowders. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering 2011, 225 (1) , 62-71. DOI: 10.1243/09544089JPME307.
  61. Julia C. Mirza Rosca, Eladio D. Herrera Santana, S. Drob, Agurtzane Martinez Ortigosa. Behavior of Two Titanium Alloys in Simulated Body Fluid. MRS Proceedings 2011, 1355 DOI: 10.1557/opl.2011.1137.
  62. I. Cvijović-Alagić, Z. Cvijović, S. Mitrović, M. Rakin, Đ. Veljović, M. Babić. Tribological Behaviour of Orthopaedic Ti-13Nb-13Zr and Ti-6Al-4V Alloys. Tribology Letters 2010, 40 (1) , 59-70. DOI: 10.1007/s11249-010-9639-8.
  63. Rajarshi Banerjee, Soumya Nag. Laser Processing of Orthopedic Biomaterials. 2010,,, 277-322. DOI: 10.1002/9780470891315.ch9.
  64. Wen-Fu Ho, Shih-Ching Wu, Yu-Sheng Hong, Hsueh-Chuan Hsu. Evaluation of the machinability of Ti–Sn alloys. Journal of Alloys and Compounds 2010, 502 (1) , 112-117. DOI: 10.1016/j.jallcom.2010.03.227.
  65. Wen-Fu Ho, Shih-Ching Wu, Hsiang-Hao Chang, Hsueh-Chuan Hsu. Structure and mechanical properties of Ti–5Cr based alloy with Mo addition. Materials Science and Engineering: C 2010, 30 (6) , 904-909. DOI: 10.1016/j.msec.2010.04.006.
  66. Wen-Fu Ho, Shih-Ching Wu, Hsiao-Wei Wang, Hsueh-Chuan Hsu. Effects of Cr addition on grindability of cast Ti–10Zr based alloys. Materials Chemistry and Physics 2010, 121 (3) , 465-471. DOI: 10.1016/j.matchemphys.2010.02.009.
  67. Satendra Kumar, T.S.N. Sankara Narayanan, S. Saravana Kumar. Influence of fluoride ion on the electrochemical behaviour of β-Ti alloy for dental implant application. Corrosion Science 2010, 52 (5) , 1721-1727. DOI: 10.1016/j.corsci.2010.01.008.
  68. Hsueh-Chuan Hsu, Hsi-Chen Lin, Shih-Ching Wu, Yu-Sheng Hong, Wen-Fu Ho. Microstructure and grindability of as-cast Ti–Sn alloys. Journal of Materials Science 2010, 45 (7) , 1830-1836. DOI: 10.1007/s10853-009-4166-4.
  69. Hsueh-Chuan Hsu, Shih-Ching Wu, Yu-Chih Sung, Wen-Fu Ho. The structure and mechanical properties of as-cast Zr–Ti alloys. Journal of Alloys and Compounds 2009, 488 (1) , 279-283. DOI: 10.1016/j.jallcom.2009.08.105.
  70. B. L. Wang, Y. F. Zheng, L. C. Zhao. Electrochemical corrosion behavior of biomedical Ti-22Nb and Ti-22Nb-6Zr alloys in saline medium. Materials and Corrosion 2009, 60 (10) , 788-794. DOI: 10.1002/maco.200805173.
  71. Hsueh-Chuan Hsu, Shih-Ching Wu, Tsung-Yu Chiang, Wen-Fu Ho. Structure and grindability of dental Ti–Cr alloys. Journal of Alloys and Compounds 2009, 476 (1-2) , 817-825. DOI: 10.1016/j.jallcom.2008.09.116.
  72. B. L. Wang, Y. F. Zheng, L. C. Zhao. Effects of Hf content and immersion time on electrochemical behavior of biomedical Ti-22Nb- x Hf alloys in 0.9% NaCl solution. Materials and Corrosion 2009, 60 (5) , 330-335. DOI: 10.1002/maco.200805120.
  73. Hsueh-Chuan Hsu, Chang-Hung Pan, Shih-Ching Wu, Wen-Fu Ho. Structure and grindability of cast Ti–5Cr–xFe alloys. Journal of Alloys and Compounds 2009, 474 (1-2) , 578-583. DOI: 10.1016/j.jallcom.2008.07.003.
  74. Wen-Fu Ho, Tsung-Yu Chiang, Shih-Ching Wu, Hsueh-Chuan Hsu. Evaluation of low-fusing porcelain bonded to dental cast Ti–Cr alloys. Journal of Alloys and Compounds 2009, 474 (1-2) , 505-509. DOI: 10.1016/j.jallcom.2008.06.152.
  75. Marianthi G. Manda, Pandora P. Psyllaki, Dimitrios N. Tsipas, Petros T. Koidis. Observations on an in-vivo failure of a titanium dental implant/abutment screw system: A case report. Journal of Biomedical Materials Research Part B: Applied Biomaterials 2009, 89B (1) , 264-273. DOI: 10.1002/jbm.b.31211.
  76. Wen-Fu Ho, Chung-Hsiao Cheng, Wei-Kai Chen, Shih-Ching Wu, Hsi-Chen Lin, Hsueh-Chuan Hsu. Evaluation of low-fusing porcelain bonded to dental cast Ti–Zr alloys. Journal of Alloys and Compounds 2009, 471 (1-2) , 185-189. DOI: 10.1016/j.jallcom.2008.03.040.
  77. Wen-Fu Ho, Chang-Hung Pan, Shih-Ching Wu, Hsueh-Chuan Hsu. Mechanical properties and deformation behavior of Ti–5Cr–xFe alloys. Journal of Alloys and Compounds 2009, 472 (1-2) , 546-550. DOI: 10.1016/j.jallcom.2008.05.015.
  78. W.Y. Guo, J. Sun, J.S. Wu. Effect of deformation on corrosion behavior of Ti–23Nb–0.7Ta–2Zr–O alloy. Materials Characterization 2009, 60 (3) , 173-177. DOI: 10.1016/j.matchar.2008.08.006.
  79. W.Y. Guo, J. Sun, J.S. Wu. Electrochemical and XPS studies of corrosion behavior of Ti–23Nb–0.7Ta–2Zr–O alloy in Ringer's solution. Materials Chemistry and Physics 2009, 113 (2-3) , 816-820. DOI: 10.1016/j.matchemphys.2008.08.043.
  80. Wen-Fu Ho, Chung-Hsiao Cheng, Chang-Hung Pan, Shih-Ching Wu, Hsueh-Chuan Hsu. Structure, mechanical properties and grindability of dental Ti–10Zr–X alloys. Materials Science and Engineering: C 2009, 29 (1) , 36-43. DOI: 10.1016/j.msec.2008.05.004.
  81. Wen-Fu Ho, Tsung-Yu Chiang, Shih-Ching Wu, Hsueh-Chuan Hsu. Mechanical properties and deformation behavior of cast binary Ti–Cr alloys. Journal of Alloys and Compounds 2009, 468 (1-2) , 533-538. DOI: 10.1016/j.jallcom.2008.01.046.
  82. Wen-Fu Ho, Wei-Kai Chen, Shih-Ching Wu, Hsueh-Chuan Hsu. Structure, mechanical properties, and grindability of dental Ti–Zr alloys. Journal of Materials Science: Materials in Medicine 2008, 19 (10) , 3179-3186. DOI: 10.1007/s10856-008-3454-x.
  83. Wen-Fu Ho. A comparison of tensile properties and corrosion behavior of cast Ti–7.5Mo with c.p. Ti, Ti–15Mo and Ti–6Al–4V alloys. Journal of Alloys and Compounds 2008, 464 (1-2) , 580-583. DOI: 10.1016/j.jallcom.2007.10.054.
  84. Satendra Kumar, T.S.N. Sankara Narayanan. Corrosion behaviour of Ti–15Mo alloy for dental implant applications. Journal of Dentistry 2008, 36 (7) , 500-507. DOI: 10.1016/j.jdent.2008.03.007.
  85. C.J. Boehlert, C.J. Cowen, J.P. Quast, T. Akahori, M. Niinomi. Fatigue and wear evaluation of Ti-Al-Nb alloys for biomedical applications. Materials Science and Engineering: C 2008, 28 (3) , 323-330. DOI: 10.1016/j.msec.2007.04.003.
  86. Mi Young Oh, Han Cheol Choe, Yeong Mu Ko. AC Impedance Behaviors of Ti-Zr Binary Alloys for Biomaterials. Advanced Materials Research 2007, 26-28, 817-820. DOI: 10.4028/www.scientific.net/AMR.26-28.817.
  87. Su Jung Park, Hyun Kyu Lee. A Characteristics Study of FeAlCr Intermetallic Compound Manufactured by Osprey Forming Process. Solid State Phenomena 2007, 124-126, 1465-1468. DOI: 10.4028/www.scientific.net/SSP.124-126.1465.
  88. Yoshiki Oshida. Mechanical and Tribological Behaviors. 2007,,, 105-124. DOI: 10.1016/B978-008045142-8/50005-0.
  89. Yu Feng Zheng, Bao Lai Wang. Mechanical Properties and Corrosion Behavior of a Beta Titanium Alloy. Key Engineering Materials 2006, 324-325, 695-698. DOI: 10.4028/www.scientific.net/KEM.324-325.695.
  90. Gladys Pérez, Nicolás Pregi, Daniela Vittori, Cecilia Di Risio, Graciela Garbossa, Alcira Nesse. Aluminum exposure affects transferrin-dependent and -independent iron uptake by K562 cells. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 2005, 1745 (1) , 124-130. DOI: 10.1016/j.bbamcr.2004.12.002.
  91. S. Nag, R. Banerjee, J. Stechschulte, H. L. Fraser. Comparison of microstructural evolution in Ti-Mo-Zr-Fe and Ti-15Mo biocompatible alloys. Journal of Materials Science: Materials in Medicine 2005, 16 (7) , 679-685. DOI: 10.1007/s10856-005-2540-6.
  92. Chia-Wei Lin, Chien-Ping Ju, Jiin-Huey Chern Lin. A comparison of the fatigue behavior of cast Ti–7.5Mo with c.p. titanium, Ti–6Al–4V and Ti–13Nb–13Zr alloys. Biomaterials 2005, 26 (16) , 2899-2907. DOI: 10.1016/j.biomaterials.2004.09.007.
  93. S. Nag, R. Banerjee, H.L. Fraser. Microstructural evolution and strengthening mechanisms in Ti–Nb–Zr–Ta, Ti–Mo–Zr–Fe and Ti–15Mo biocompatible alloys. Materials Science and Engineering: C 2005, 25 (3) , 357-362. DOI: 10.1016/j.msec.2004.12.013.
  94. Y.H. Hon, J.Y. Wang, Y.N. Pan. Influence of hafnium content on mechanical behaviors of Ti–40Nb–xHf alloys. Materials Letters 2004, 58 (25) , 3182-3186. DOI: 10.1016/j.matlet.2004.06.009.
  95. Rajarshi Banerjee, Soumya Nag, John Stechschulte, Hamish L. Fraser. Strengthening mechanisms in Ti–Nb–Zr–Ta and Ti–Mo–Zr–Fe orthopaedic alloys. Biomaterials 2004, 25 (17) , 3413-3419. DOI: 10.1016/j.biomaterials.2003.10.041.
  96. S Yumoto, H Nagai, K Kobayashi, W Tada, T Horikawa, H Matsuzaki. 26Al incorporation into the tissues of suckling rats through maternal milk. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 2004, 223-224, 754-758. DOI: 10.1016/j.nimb.2004.04.140.
  97. Yen-Huei Hon, Jian-Yih Wang, Yung-Ning Pan. Microstructures and Mechanical Behaviors of Ti-30Nb-1Fe-<i>x</i>Hf Alloys. MATERIALS TRANSACTIONS 2004, 45 (7) , 2449-2455. DOI: 10.2320/matertrans.45.2449.
  98. Yen-Huei Hon, Jian-Yih Wang, Yung-Ning Pan. Composition/Phase Structure and Properties of Titanium-Niobium Alloys. MATERIALS TRANSACTIONS 2003, 44 (11) , 2384-2390. DOI: 10.2320/matertrans.44.2384.
  99. D.J Lin, J.H Chern Lin, C.P Ju. Effect of omega phase on deformation behavior of Ti–7.5Mo–xFe alloys. Materials Chemistry and Physics 2002, 76 (2) , 191-197. DOI: 10.1016/S0254-0584(01)00511-9.
  100. D.J. Lin, J.H. Chern Lin, C.P. Ju. Structure and properties of Ti–7.5Mo–xFe alloys. Biomaterials 2002, 23 (8) , 1723-1730. DOI: 10.1016/S0142-9612(01)00233-2.
  101. Suram Anitha, Kosagi Sharaf Jagannatha Rao. The Complexity of Aluminum-DNA Interactions: Relevance to Alzheimer’s and Other Neurological Diseases. 2002,,, 79-97. DOI: 10.1007/3-540-45425-X_3.
  102. Sakae Yumoto, Hisao Nagai, Hiroyuki Matsuzaki, Hiroshi Matsumura, Wataru Tada, Emiko Nagatsuma, Kouichi Kobayashi. Aluminium incorporation into the brain of rat fetuses and sucklings. Brain Research Bulletin 2001,55 (2) , 229-234. DOI: 10.1016/S0361-9230(01)00509-3.
  103. Walter J. Lukiw. Aluminum and Gene Transcription in the Mammalian Central Nervous System — Implications for Alzheimer's Disease. 2001,,, 147-168. DOI: 10.1016/B978-044450811-9/50032-X.
  104. Alcira Nesse, Graciela Garbossa. Aluminium Toxicity in Erythropoiesis. Mechanisms Related to Cellular Dysfunction in Alzheimer’s Disease. 2001,,, 261-277. DOI: 10.1016/B978-044450811-9/50038-0.
  105. Michael J. Strong. Aluminum as an Experimental Neurotoxicant: The Neuropathology and Neurochemistry. 2001,,, 189-202. DOI: 10.1016/B978-044450811-9/50034-3.
  106. Paul Altmann. Aluminium Induced Disease in Subjects with and without Renal Failure—Does It Help Us Understand the Role of Aluminium in Alzheimer’s Disease?. 2001,,, 1-36. DOI: 10.1016/B978-044450811-9/50026-4.
  107. Hideaki Matsumoto. Cell biology of aluminum toxicity and tolerance in higher plants. 2000,,, 1-46. DOI: 10.1016/S0074-7696(00)00001-2.
  108. Chaim T. Horovitz. Interactions of Scandium and Yttrium within Cells, Cellular Organelles, and Tissues. 2000,,, 1-38. DOI: 10.1007/978-1-4615-4311-4_1.
  109. W.F Ho, C.P Ju, J.H Chern Lin. Structure and properties of cast binary Ti–Mo alloys. Biomaterials 1999, 20 (22) , 2115-2122. DOI: 10.1016/S0142-9612(99)00114-3.
  110. Juan C. Stockert, Nora Ibáñez, Clara I. Trigoso, Magdalena Cañete, Tato Agustín. A barium method for the cytochemical detection of sulfated glycosaminoglycans in mast cells and basophilic leukocytes. Acta Histochemica 1999, 101 (4) , 397-408. DOI: 10.1016/S0065-1281(99)80040-3.
  111. S. Rao, Y. Okazaki, T. Tateishi, T. Ushida, Y. Ito. Cytocompatibility of new Ti alloy without Al and V by evaluating the relative growth ratios of fibroblasts L929 and osteoblasts MC3T3-E1 cells. Materials Science and Engineering: C 1997, 4 (4) , 311-314. DOI: 10.1016/S0928-4931(97)00016-7.
  112. S. Yumoto, H. Nagai, M. Imamura, H. Matsuzaki, K. Hayashi, A. Masuda, H. Kumazawa, H. Ohashi, K. Kobayashi. 26Al uptake and accumulation in the rat brain. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 1997, 123 (1-4) , 279-282. DOI: 10.1016/S0168-583X(96)00429-6.
  113. D. R. C. McLachlan. Aluminium and the risk for alzheimer's disease. Environmetrics 1995, 6 (3) , 233-275. DOI: 10.1002/env.3170060303.
  114. Sakae Yumoto, Shigeo Kakimi, Yoshiaki Ogawa, Hisao Nagai, Mineo Imamura, Koichi Kobayashi. Aluminum Neurotoxicity and Alzheimer’s Disease. 1995,,, 223-229. DOI: 10.1007/978-1-4757-9145-7_34.
  115. W. J. Lukiw, P. St. George-Hyslop, D. R. McLachlan. Chromatin Structure, Gene Expression, and Nuclear Aluminum in Alzheimer’s Disease. 1994,,, 31-45. DOI: 10.1007/978-3-642-78458-3_4.
  116. C. Elizabeth Castro, Pei-Ting Cheng. Zinc deficiency in rat does not alter the major histone patterns in liver nuclei. Nutrition Research 1993, 13 (5) , 541-548. DOI: 10.1016/S0271-5317(05)80681-5.
  117. W.J. Lukiw, B. Krishnan, L. Wong, T.P.A. Kruck, C. Bergeron, D.R.Crapper McLachlan. Nuclear compartmentalization of aluminum in Alzheimer's disease (AD). Neurobiology of Aging 1992, 13 (1) , 115-121. DOI: 10.1016/0197-4580(92)90018-S.
  118. B. Corain, M. Nicolini, P. Zatta. Aspects of the bioinorganic chemistry of aluminium(III) relevant to the metal toxicity. Coordination Chemistry Reviews 1992, 112, 33-45. DOI: 10.1016/0010-8545(92)80004-B.
  119. Miguel Angel Serra, Valentina Barassi, Caterina Canavese, Enrico Sabbioni. Aluminum effect on the activity of superoxide dismutase and of other antioxygenic enzymes in vitro. Biological Trace Element Research 1991, 31(1) , 79-96. DOI: 10.1007/BF02990362.
  120. Alfred Haug, Biao Shi. Biochemical basis of aluminium tolerance in plant cells. 1991,,, 839-850. DOI: 10.1007/978-94-011-3438-5_94.
  121. Ronald C. Hamdy. Aluminum toxicity and Alzheimer's disease. Postgraduate Medicine 1990, 88 (5) , 239-240. DOI: 10.1080/00325481.1990.11716406.
  122. Barend KRAAL, J. Martien GRAAF, Jeroen R. MESTERS, Peter J. M. HOOF, Eric JACQUET, Andrea PARMEGGIANI. Fluoroaluminates do not affect the guanine-nucleotide binding centre of the peptide chain elongation factor EF-Tu. European Journal of Biochemistry 1990, 192 (2) , 305-309. DOI: 10.1111/j.1432-1033.1990.tb19228.x.
  123. Andrea Hartwig, Ursula Kasten, Kwabena Boakye‐Dankwa, Regina Schlepegrell, Detmar Beyersmann. Uptake and genotoxicity of micromolar concentrations of cobalt chloride in mammalian cells. Toxicological & Environmental Chemistry 1990, 28 (4) , 205-215. DOI: 10.1080/02772249009357604.
  124. Biao Shi, Alfred Haug. Aluminum Uptake by Neuroblastoma Cells. Journal of Neurochemistry 1990, 55 (2) , 551-558. DOI: 10.1111/j.1471-4159.1990.tb04169.x.
  125. G. Chazot, E. Broussolle. Brain Aging and Trace Elements in Human: Clues into the Pathogenesis of Alzheimer’s Disease. 1990,,, 39-46. DOI: 10.1007/978-4-431-68120-5_3.



VOLTAR